ACS Appl. Mater. Interfaces 10, 4, 4266–4270 (2018)
We study the properties of silicene on monolayer PtSe2 by first-principles calculations and demonstrate a much stronger interlayer interaction than previously reported for silicene on other semiconducting substrates. This fact opens the possibility of a direct growth. A band gap of 165 meV results from inversion symmetry breaking and large spin-splittings in the valence and conduction bands from proximity to monolayer PtSe2 and its strong spin–orbit coupling. It is also shown that the interlayer interaction can be effectively reduced by intercalating NH3 molecules between silicene and monolayer PtSe2 without inducing charge transfer or defect states near the Fermi energy. A small NH3 diffusion barrier makes intercalation a viable experimental approach to control the interlayer interaction.